|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что в четырехугольник можно вписать и около него можно описать окружность. Докажите, что отрезки, соединяющие точки касания противоположных сторон с вписанной окружностью, взаимно перпендикулярны.
Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°. Найдите все корни уравнения (z – 1)n = (z + 1)n. На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL. |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 306]
На сетке из равносторонних треугольников построен угол ACB (см. рисунок). Найдите его величину.
Восемь одинаковых шаров положили в коробку так, как показано на рисунке. Докажите, что центры трёх верхних шаров лежат на одной прямой.
На окружности выбрано пять точек A1, A2, A3, A4, H. Обозначим через hij расстояние от точки H до прямой AiAj. Доказать, что h12h34 = h14h23.
В треугольнике одна из средних линий больше одной из медиан. Докажите, что этот треугольник – тупоугольный.
На боковых сторонах AB и BC равнобедренного треугольника ABC взяты точки K и L соответственно, так что AK + LC = KL. Из середины M отрезка KL провели прямую, параллельную BC, и эта прямая пересекла сторону AC в точке N. Найдите величину угла KNL.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 306] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|