ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S. Пусть h — наименьшая высота тетраэдра, d — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ? Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции. Пусть M – точка пересечения медиан треугольника ABC .
На перпендикулярах, опущенных из M на стороны BC , AC и
AB , взяты точки A1 , B1 и C1 соответственно,
причём A1B1 Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M (MB < MA, Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что BP = CP. Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы. Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC . Наиболее точный календарь ввёл в Персии в 1079 году персидский астроном, математик и поэт Омар Альхайями. Восстановите этот календарный стиль, рассмотрев третью подходящую дробь [365; 4, 7, 1] к длительности астрономического года. За сколько лет в этом календаре накапливается ошибка в одни сутки? Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны. Докажите, что прямая, пересекающая одну из двух параллельных прямых, пересекает и другую. Точки A, B, C, D лежат на одной прямой. Докажите, что если треугольники ABE1 и ABE2 равны, то треугольники CDE1 и CDE2 тоже равны. Через точку M, лежащую внутри угла с вершиной A, проведены прямые, параллельные сторонам угла и пересекающие эти стороны в точках B и C. Известно, что ∠ACB = 50°, а угол, смежный с углом ACM, равен 40°. Найдите углы треугольников BCM и ABC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 171]
У мамы два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд она дает сыну один из оставшихся фруктов.
Сколько слов можно составить из пяти букв А и не более чем из трёх букв Б?
У одного школьника есть 6 книг по математике, а у другого – 8. Сколькими способами они могут обменять три книги одного на три книги другого?
Сколькими способами можно составить комиссию из трёх человек, выбирая её членов из четырёх супружеских пар, но так, чтобы члены одной семьи не входили в комиссию одновременно?
Сколькими способами можно переставить буквы слова "ЭПИГРАФ" так, чтобы и гласные, и согласные шли в алфавитном порядке?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 171]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке