Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 965]
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой многочлен f(x) степени 6, что для любого x выполнено равенство f(sinx) + f(cosx) = 1?
|
|
Сложность: 4- Классы: 8,9,10
|
Серёжа выбрал два различных натуральных числа a и b. Он записал в тетрадь четыре числа: a, a + 2, b и b + 2. Затем он выписал на доску все шесть попарных произведений чисел из тетради. Какое наибольшее количество точных квадратов может быть среди чисел на доске?
|
|
Сложность: 4- Классы: 10,11
|
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
|
|
Сложность: 4- Классы: 10,11
|
Алгебраисты придумали новую операцию ❆, которая удовлетворяет условиям:
а ❆ а = 0 и а ❆ (b ❆ c) = (a ❆ b) + c. Вычислите 2015 ❆ 2014. (Знак "+" определяет сложение в обычном смысле, скобки показывают порядок действий.)
|
|
Сложность: 4- Классы: 9,10,11
|
Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 965]