Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 965]
[Метод Лобачевского и числа Люка]
|
|
Сложность: 4 Классы: 10,11
|
Постройте последовательность полиномов, которая получается, если метод
Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена x² – x – 1. Какие последовательности будут сходиться к корням x1 и x2, если |x1| > |x2|?
[Интерполяционная формула Ньютона]
|
|
Сложность: 4 Классы: 10,11
|
а) Докажите, что для любого многочлена f(x) степени n существует единственное представление его в виде
Биномиальный коэффициент
интерпретируется как многочлен от переменной
x. В частности, нижний индекс у биномиального коэффициента может быть любым действительным числом.
б) Докажите, что коэффициенты d0, d1, ..., dn в этом представлении вычисляются по формуле dk = Δkf(0)
(0 ≤ k ≤ n).
|
|
Сложность: 4 Классы: 8,9,10
|
На доске было написано уравнение вида x² + px + q = 0 с целыми ненулевыми коэффициентами p и q. Временами к доске подходили разные школьники, стирали уравнение, после чего составляли и записывали уравнение такого же вида, корнями которого являются коэффициенты стёртого уравнения. В какой-то момент составленное уравнение совпало с тем, что было написано на доске изначально. Какое уравнение изначально было написано на доске?
|
|
Сложность: 4 Классы: 10,11
|
Пусть P(x) = anxn + ... + a1x + a0 – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел |3n+1 – P(n + 1)|, ..., |31 – P(1)|, |1 – P(0)| не меньше 1.
|
|
Сложность: 4 Классы: 9,10,11
|
Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения P(n1)P(n2)...P(nk). По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?
Страница:
<< 52 53 54 55
56 57 58 >> [Всего задач: 965]