ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 965]      



Задача 67197

Темы:   [ Целочисленные и целозначные многочлены ]
[ Основная теорема алгебры и ее следствия ]
Сложность: 4
Классы: 10,11

Дан многочлен $P(x)$ степени $n>5$ с целыми коэффициентами, имеющий $n$ различных целых корней. Докажите, что многочлен $P(x)+3$ имеет $n$ различных действительных корней.
Прислать комментарий     Решение


Задача 76528

Тема:   [ Разложение на множители ]
Сложность: 4
Классы: 8,9

Докажите, что выражение  x5 + 3x4y – 5x³y2 – 15x²y³ + 4xy4 + 12y5  не равно 33 ни при каких целых значениях x и y.

Прислать комментарий     Решение

Задача 79247

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 10,11

Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3.
Доказать, что существует не более одного целого x, при котором значение этого многочлена равно 5.

Прислать комментарий     Решение

Задача 98268

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10

а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 
Прислать комментарий     Решение

Задача 98286

Темы:   [ Целочисленные и целозначные многочлены ]
[ Рациональные и иррациональные числа ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

Дано n чисел, p – их произведение. Разность между p и каждым из этих чисел – нечётное число. Докажите, что все данные n чисел иррациональны.

Прислать комментарий     Решение

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .