Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 143]
Прямую палку длиной 2 метра распилили на N палочек, длина каждой из которых выражается целым числом сантиметров. При каком наименьшем N можно гарантировать, что, использовав все получившиеся палочки, можно, не ломая их, сложить контур некоторого прямоугольника?
|
|
|
Сложность: 4 Классы: 7,8,9
|
Лист клетчатой бумаги размером
N×
N раскрасили в
N цветов. (Каждую клеточку закрасили одним из этих
N цветов или не закрасили вообще). "Правильной" раскраской называется такая, что в каждом столбце и в каждой строке нет двух клеточек одинакового цвета. Можно ли докрасить лист "правильным" способом, если сначала было "правильно" закрашено
а)
N2 - 1 клетка?
б)
N2 - 2 клетки?
в)
N клеток?
|
|
|
Сложность: 4+ Классы: 9,10,11
|
Множество клеток на клетчатой плоскости назовем ладейно связным, если из каждой его клетки можно попасть в любую другую, двигаясь по клеткам этого множества ходом ладьи (ладье разрешается перелетать через поля, не принадлежащие нашему множеству). Докажите, что ладейно связное множество из 100 клеток можно разбить на пары клеток, лежащих в одной строке или в одном столбце.
|
|
|
Сложность: 4+ Классы: 9,10,11
|
На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?
|
|
|
Сложность: 4+ Классы: 9,10
|
Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли
бурьяном. Известно, что бурьян за год распространяется на те и только те
участки, у каждого из которых не менее двух соседних участков уже поражены
бурьяном (участки соседние, если они имеют общую сторону). Докажите, что
полностью все поле бурьяном не зарастёт.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 143]