ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что в вершинах многогранника можно расставить натуральные числа
так, что в каждых двух вершинах, соединённых ребром, стоят числа не взаимно простые, а в каждых двух вершинах, не соединённых ребром, взаимно простые.
Каждая диагональ выпуклого пятиугольника параллельна одной из
его сторон. Докажите, что аффинным преобразованием этот
пятиугольник можно перевести в правильный пятиугольник.
На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник. На сторонах AB, BC и CA треугольника ABC
взяты точки P, Q и R соответственно. Докажите, что центры
описанных окружностей треугольников APR, BPQ и CQR
образуют треугольник, подобный треугольнику ABC.
Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6. |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 258]
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Площадь треугольника ABC равна 10 см². Какое наименьшее значение может принимать радиус описанной окружности треугольника ABC, если известно, что середины высот этого треугольника лежат на одной прямой?
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке