ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 258]      



Задача 57379

Темы:   [ Признаки и свойства параллелограмма ]
[ Четырехугольник (неравенства) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
[ Площадь параллелограмма ]
Сложность: 4+
Классы: 8,9,10

В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.

Прислать комментарий     Решение

Задача 57539

Темы:   [ Экстремальные точки треугольника ]
[ Теоремы Чевы и Менелая ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9

Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1 пересекаются в одной точке M.
При каком положении точки M величина  MA1/AA1·MB1/BB1·MC1/CC1 максимальна?

Прислать комментарий     Решение

Задача 57540

Темы:   [ Экстремальные точки треугольника ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через высоту и основание) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 8,9,10

Из точки M, лежащей внутри данного треугольника ABC, опущены перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина     принимает наименьшее значение?

Прислать комментарий     Решение

Задача 61394

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Классические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
[ Число e ]
Сложность: 4+
Классы: 10,11

Докажите неравенства:
  а)  

  б)     при  n > 1;

  в)     при n > 6.

Прислать комментарий     Решение

Задача 79458

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных единице.
Докажите, что сумма всех попарных произведений соседних чисел не больше ¼.

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .