|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Биссектриса CD угла ACB при основании BC равнобедренного треугольника ABC делит сторону AB так, что AD=BC . Найдите биссектрису CD и площадь треугольника ABC , если BC=2 . Используя пять девяток, арифметические действия и возведение в степень, составьте числа от 1 до 13. |
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 258]
Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E. Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4, AD = 3. Найдите сторону BC.
В выпуклом четырёхугольнике ABCD точка E – пересечение
диагоналей. Известно, что площадь каждого из треугольников ABE и
DCE равна 7, а площадь всего четырёхугольника не превосходит 28;
AD =
Длина гипотенузы прямоугольного треугольника равна 3.
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
Многочлен степени $n > 1$ имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 258] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|