ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 61279

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

а) Докажите, что при  4p³ + 27q² < 0  уравнение  x³ + px + q = 0  заменой  x = αy + β  сводится к уравнению ay³ – 3by² – 3ay + b = 0    (*)
от переменной y.

б) Докажите, что решениями уравнения (*) будут числа   y1 = tg ,   y2 = tg ,   y3 = tg ,   где φ определяется из условий:
sin φ = ,   cos φ = .

Прислать комментарий     Решение

Задача 61286

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 10,11

Последовательность чисел {hn} задана условиями:

h1 = $\displaystyle {\textstyle\dfrac{1}{2}}$,        hn + 1 = $\displaystyle \sqrt{\dfrac{1-\sqrt{1-h_n^2}}2}$    (n $\displaystyle \geqslant$ 1).


Докажите неравенство $ \sum\limits_{k=1}^{\infty}$hk < 1, 03.

Прислать комментарий     Решение

Задача 61447

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

При помощи преобразования Абеля вычислите следующие суммы:
а) $ \sum\limits_{k=1}^{n}$k2qk - 1;
б) $ \sum\limits_{k=1}^{n}$k sin kx;
в) $ \sum\limits_{k=1}^{n}$k2cos kx.

Прислать комментарий     Решение

Задача 61251

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тригонометрия (прочее) ]
Сложность: 5
Классы: 10,11

Пусть числа uk определены как и в предыдущей задаче. Докажите тождества:

а) 1 - u1 + u2 - u3 +...+ u2n = 2n(1 - cos x)(1 - cos 3x)...(1 - cos(2n - 1)x);

б) 1 - u12 + u22 - u32 +...+ u2n2 = (- 1)n$ {\dfrac{\sin(2n+2)x\cdot
\sin(2n+4)x\cdot\ldots \cdot\sin4nx}{\sin
2nx\cdot\sin2(n-1)x\cdot\ldots\cdot\sin 2x}}$.
Прислать комментарий     Решение

Задача 60866

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .