|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 389]
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
В некотором государстве было 2004 города, соединённых дорогами так, что из каждого города можно было добраться до любого другого. Известно, что при запрещённом проезде по любой из дорог по-прежнему из каждого города можно
было добраться до любого другого. Министр транспорта и министр внутренних
дел по очереди вводят на дорогах, пока есть возможность, одностороннее
движение (на одной дороге за ход), причём министр, после хода которого из
какого-либо города стало невозможно добраться до какого-либо другого,
немедленно уходит в отставку. Первым ходит министр транспорта.
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.
На олимпиаду пришло 2018 участников, некоторые из них знакомы между собой. Будем говорить, что несколько попарно знакомых участников образуют "кружок", если любой другой участник олимпиады не знаком с кем-то из них. Докажите, что можно рассадить всех участников олимпиады по 90 аудиториям так, что ни в какой аудитории не будут сидеть все представители какого-либо "кружка".
С четырёх сторон шахматной доски размером n×n построена кайма шириной в два поля. Докажите, что кайму можно обойти шахматным конём, побывав на каждом поле один и только один раз, в тех и только тех случаях, когда n – 1 кратно 4.
Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 389] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|