ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 9702]      



Задача 53901

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Продолжения двух противоположных сторон AB и CD четырёхугольника ABCD пересекаются под углом α, продолжения двух других противоположных сторон пересекаются под тем же углом. Докажите, что два угла в четырёхугольнике равны, и найдите разность двух других его углов.

Прислать комментарий     Решение

Задача 53925

Тема:   [ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.

Прислать комментарий     Решение

Задача 54042

Тема:   [ Медиана, проведенная к гипотенузе ]
Сложность: 3
Классы: 8,9

Основание H высоты CH прямоугольного треугольника ABC соединили с серединами M и N катетов AC и BC.
Докажите, что периметр четырёхугольника CMHN равен сумме катетов треугольника ABC.

Прислать комментарий     Решение

Задача 54049

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Хорда, перпендикулярная диаметру окружности, делит его в отношении  1 : 3.  Под какими углами видна хорда из концов этого диаметра?

Прислать комментарий     Решение

Задача 54241

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Две стороны треугольника равны 25 и 30, а высота, проведённая к третьей, равна 24. Найдите третью сторону.

Прислать комментарий     Решение

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .