ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 60415

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3+
Классы: 8,9,10

120 одинаковых шаров плотно уложены в виде правильной треугольной пирамиды. Сколько шаров лежит в основании?

Прислать комментарий     Решение

Задача 76531

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Проективная плоскость с конечным числом точек ]
Сложность: 3+
Классы: 8,9

Автобусная сеть города устроена следующим образом:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом единственная, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте ровно три остановки.
Сколько автобусных маршрутов в городе? (Известно, что их больше одного.)
Прислать комментарий     Решение


Задача 35440

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 3+
Классы: 8,9,10

Ладья обошла шахматную доску, побывав в каждой клетке по крайней мере по одному разу. Какое наименьшее число поворотов при этом она могла сделать?
Прислать комментарий     Решение


Задача 110143

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
[ Модуль числа (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Прислать комментарий     Решение


Задача 35191

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Экстремальные свойства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Число ребер выпуклого многогранника равно 99. Какое наибольшее число ребер может пересечь плоскость, не проходящая через его вершины?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .