Страница:
<< 92 93 94 95 96 97
98 >> [Всего задач: 488]
|
|
Сложность: 6- Классы: 10,11
|
Пусть
h — наименьшая высота тетраэдра,
d — наименьшее
расстояние между его противоположными ребрами. При каких
t
возможно неравенство
d>th ?
|
|
Сложность: 10- Классы: 9,10,11
|
Какое наибольшее число точек можно разместить
a) на плоскости;
б)* в пространстве так, чтобы ни один из треугольников с вершинами в этих точках не был тупоугольным?
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать
на одной прямой – без этого ограничения можно разместить сколько угодно
точек.)
|
|
Сложность: 4- Классы: 8,9,10
|
В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно
непараллельных прямых может быть среди них?
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна $p$ – 1.
Страница:
<< 92 93 94 95 96 97
98 >> [Всего задач: 488]