Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 165]
|
|
Сложность: 5 Классы: 8,9,10,11
|
За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа.
Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой.
Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных),
но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар.
При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?
|
|
Сложность: 3 Классы: 10,11
|
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по
одной карте. Вынутые карты в колоду не возвращаются. Каждый раз
перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть.
Докажите, что если Ваня каждый раз будет загадывать масть, карт
которой в колоде осталось не меньше, чем карт любой другой масти,
то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?
Страница:
<< 27 28 29 30
31 32 33 >> [Всего задач: 165]