Страница:
<< 62 63 64 65
66 67 68 >> [Всего задач: 420]
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа
. Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.
|
|
|
Сложность: 4 Классы: 9,10,11
|
Можно ли нарисовать правильный треугольник с вершинами в
узлах квадратной сетки?
|
[Иррациональность чмсла e]
|
|
Сложность: 4 Классы: 10,11
|
Число e определяется равенством
Докажите, что
а)
б)
где 0 < rn ≤ 1/n!n;
в) e – иррациональное число.
|
[Число e и комбинаторика]
|
|
Сложность: 4 Классы: 9,10,11
|
Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если N > [k!e], то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.
|
|
|
Сложность: 4 Классы: 10,11
|
Сходимость итерационного процесса.
Предположим, что функция
f (
x) отображает отрезок [
a;
b] в
себя, и на этом отрезке
|
f'(
x)|
q < 1. Докажите, что уравнение
f (
x) =
x имеет на отрезке [
a;
b] единственный корень
x*.
Докажите, что при решении этого уравнения методом итераций будут
выполняться неравенства:
|
xn + 1 -
xn|

|
x1 -
x0|
. qn, |
x* -
xn|

|
x1 -
x0|
. 
.
Страница:
<< 62 63 64 65
66 67 68 >> [Всего задач: 420]