Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 416]
|
|
Сложность: 4+ Классы: 10,11
|
Последовательность чисел
x0,
x1,
x2,...задается условиями
x0 = 1,
xn + 1 =
axn (
n 0).
Найдите наибольшее число
a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого
a?
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
|
|
Сложность: 4+ Классы: 9,10,11
|
Существует ли четырёхугольник
ABCD площади 1 такой, что для любой точки
O внутри него площадь хотя бы одного из треугольников
OAB,
OBC,
OCD,
DOA иррациональна.
|
|
Сложность: 5- Классы: 10,11
|
Функция
y =
f (
x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что
f (0) =
f (1) = 0 и что
|
f''(
x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции
f для всевозможных функций, удовлетворяющих этим условиям?
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x).
Определение средних степенных Sα(x) можно посмотреть в справочнике.
Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 416]