ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 416]      



Задача 61337

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Производная и касательная ]
Сложность: 4+
Классы: 10,11

Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

Прислать комментарий     Решение

Задача 66603

Темы:   [ Построения с помощью вычислений ]
[ Геометрическая прогрессия ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4+
Классы: 9,10,11

Существует ли такой выпуклый четырехугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?
Прислать комментарий     Решение


Задача 78659

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь трапеции ]
[ Рациональные и иррациональные числа ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 9,10,11

Существует ли четырёхугольник ABCD площади 1 такой, что для любой точки O внутри него площадь хотя бы одного из треугольников OAB, OBC, OCD, DOA иррациональна.
Прислать комментарий     Решение


Задача 79373

Темы:   [ Производные высших порядков ]
[ Интеграл и первообразная ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 5-
Классы: 10,11

Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям?
Прислать комментарий     Решение


Задача 61413

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства ]
[ Неравенство Иенсена ]
Сложность: 5-
Классы: 10,11

Докажите, что если  α < β  и  αβ ≠ 0,   то  Sα(x) ≤ Sβ(x).
Определение средних степенных Sα(x) можно посмотреть в справочнике.

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .