ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 420]      



Задача 60854

Тема:   [ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 8,9,10,11

Может ли
а) сумма двух рациональных чисел быть иррациональной?
б) сумма двух иррациональных чисел быть рациональной?
в) иррациональное число в иррациональной степени быть рациональным?

Прислать комментарий     Решение

Задача 61002

 [Формула Тейлора для многочленов]
Темы:   [ Теоремы Тейлора и приближения функций ]
[ Многочлен n-й степени имеет не более n корней ]
[ Свойства коэффициентов многочлена ]
Сложность: 4-
Классы: 10,11

Докажите, что любой многочлен P(x) степени n можно единственным образом разложить по степеням  x – c:

P(x) = ck(x – c)k,

причем коэффициенты ck могут быть найдены по формуле

ck =         (0 k n).

Прислать комментарий     Решение

Задача 61319

Темы:   [ Ограниченность, монотонность ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 10,11

Последовательность чисел {xn} задана условиями:

x1 $\displaystyle \geqslant$ - a,        xn + 1 = $\displaystyle \sqrt{a+x_n}$.

Докажите, что последовательность {xn} монотонна и ограничена. Найдите ее предел.

Прислать комментарий     Решение

Задача 64412

Тема:   [ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен  P(x) = a0 + a1x + ... + anxn  имеет число –1 корнем кратности  m + 1  тогда и только тогда, когда выполнены условия:
    a0a1 + a2a3 + ... + (–1)nan = 0,
    – a1 + 2a2 – 3a3 + ... + (–1)nnan = 0,
      ...
    – a1 + 2ma2 – 3ma3 + ... + (–1)nnman = 0.

Прислать комментарий     Решение

Задача 64770

Темы:   [ Монотонность, ограниченность ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

Дана функция f, определённая на множестве действительных чисел и принимающая действительные значения. Известно, что для любых x и y, таких, что  x > y,  верно неравенство  (f(x))² ≤ f(y).  Докажите, что множество значений функции содержится в промежутке  [0,1].

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .