ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 5264]      



Задача 52439

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Гипотенуза AB прямоугольного треугольника ABC равна 2 и является хордой некоторой окружности. Катет AC равен 1 и лежит внутри окружности, а его продолжение пересекает окружность в точке D, причём  CD = 3.  Найдите радиус окружности.

Прислать комментарий     Решение

Задача 52534

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Концентрические окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3
Классы: 8,9

Докажите, что середины всех хорд данной длины, проведённых в данной окружности, лежат на некоторой окружности.

Прислать комментарий     Решение

Задача 52694

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника.
Прислать комментарий     Решение


Задача 52760

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

В окружности радиуса R проведена хорда, равная R/2. Через один конец хорды проведена касательная к окружности, а через другой – секущая, параллельная касательной. Найдите расстояние между касательной и секущей.

Прислать комментарий     Решение

Задача 52827

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В параллелограмме ABCD острый угол равен α . Окружность радиуса r проходит через вершины A , B , C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 5264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .