ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки M и K лежат на сторонах соответственно AB и BC треугольника ABC, отрезки AK и CM пересекаются в точке P. Известно, что каждый из отрезков AK и CM делится точкой P в отношении 2 : 1, считая от вершины. Докажите, что AK и CM – медианы треугольника. В треугольнике ABC основание высоты CD лежит на стороне AB, медиана AE равна 5, высота CD равна 6.
В треугольник ABC со стороной BC, равной 11, вписана
окружность, касающаяся стороны AB в точке D. Известно, что
AC = CD и косинус угла BAC равен
Четыре сферы радиуса 1 попарно касаются. Найдите высоту цилиндра, содержащего эти сферы так, что три из них касаются одного основания и боковой поверхности, а четвёртая – другого основания цилиндра. Найдите наименьшее натуральное число, кратное 99, в десятичной записи которого участвуют только чётные цифры. Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим. По будням Рассеянный Учёный едет на работу по кольцевой линии московского метро от станции "Таганская" до станции "Киевская", а вечером – обратно (см. схему). - поезд, идущий против часовой стрелки, приходит на "Киевскую" в среднем через 1 минуту 15 секунд после того, как на неё приходит поезд, идущий по часовой стрелке. То же верно и для "Таганской". - на поездку из дома на работу Учёный в среднем тратит на 1 минуту меньше, чем на поездку с работы домой. Найдите математическое ожидание интервала между поездами, идущими в одном направлении. |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 352]
Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что
В выпуклом четырёхугольнике ABCD выполняются равенства: ∠B = ∠C и CD = 2AB. На стороне BC выбрана такая точка X, что ∠BAX = ∠CDA.
Bыпуклый n-угольник P, где n > 3, разрезан на равные треугольники диагоналями, не пересекающимися внутри него.
Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны.
Биссектрисы треугольника ABC пересекаются в точке I, ∠ABC = 120°. На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что AP = CQ = AC. Докажите, что угол PIQ – прямой.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке