ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 112]      



Задача 67050

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Отрезок какой длины может высекать на этой прямой окружность, описанная около исходного треугольника?

Прислать комментарий     Решение

Задача 98128

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Автор: Паровян А.

Пусть в прямоугольном треугольнике AB и AC – катеты,  AC > AB.  На AC выбрана точка E, а на BC – точка D так, что  AB = AE = BD.
Докажите, что треугольник ADE прямоугольный тогда и только тогда, когда стороны треугольника ABC относятся как  3 : 4 : 5.

Прислать комментарий     Решение

Задача 115977

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.

Прислать комментарий     Решение

Задача 56852

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Сумма углов при основании трапеции равна  90o. Докажите, что отрезок, соединяющий середины оснований, равен полуразности оснований.
Прислать комментарий     Решение


Задача 56853

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём $ \angle$AMO = $ \angle$MAD. Докажите, что точка M равноудалена от точек C и D.
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .