ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1435]      



Задача 54446

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Найдите биссектрисы острых углов в прямоугольном треугольнике, катеты которого равны 6 и 8.

Прислать комментарий     Решение


Задача 55066

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом B биссектриса угла A пересекает сторону BC в точке D. Известно, что BD = 4, DC = 6. Найдите площадь треугольника ADC.

Прислать комментарий     Решение


Задача 55067

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC, в котором AB = 6, BC = 7, AC = 5. Биссектриса угла C пересекает сторону AB в точке D. Найдите площадь треугольника ADC.

Прислать комментарий     Решение


Задача 55068

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC с прямым углом A биссектриса угла B пересекает сторону AC в точке D. Известно, что AB = 6, BC = 10. Найдите площадь треугольника DBC

Прислать комментарий     Решение


Задача 66962

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9,10

Через вершины треугольника $ABC$ проведены параллельные прямые $l_a$, $l_b$, $l_c$. Пусть прямая $a$ симметрична высоте $AH_a$ относительно $l_a$. Аналогично определяем $b$, $c$. Докажите, что $a$, $b$, $c$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .