ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1442]
В равнобедренном треугольнике ABC (AB = BC) биссектрисы BD
и AF пересекаются в точке O. Отношение площади треугольника DOA
к площади треугольника BOF равно
В равнобедренном треугольнике ABC (AB = AC) проведены
биссектрисы AA1, BB1 и CC1. Площадь треугольника ABC
относится к площади треугольника
A1B1C1 как
Точки C и D лежат на окружности с диаметром AB и отличны от A и B. Прямые AC и BD пересекаются в точке P, а прямые AD и BC — в точке Q. Докажите, что AB перпендикулярно PQ.
В треугольнике PQR угол QPR равен 60o. Через вершины P и R проведены перпендикуляры к сторонам QR и PQ соответственно. Точка пересечения этих перпендикуляров находится от вершин P и Q на расстоянии, равном 1. Найдите стороны треугольника PQR.
Отрезок AB является диаметром некоторой окружности. Через его
концы проведены две прямые, пересекающие окружность в точках C и
D, лежащих по одну сторону от прямой AB. Точка O, в которой
пересекаются эти прямые, равноудалена от концов диаметра AB.
Найдите радиус окружности, если CD = 1 и
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1442]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке