Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 70]
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике $ABC$ $AH_1$ и $BH_2$ – высоты; касательная к описанной окружности в точке $A$ пересекает $BC$ в точке $S_1$, а касательная в точке $B$ пересекает $AC$ в точке $S_2$; $T_1$ и $T_2$ – середины отрезков $AS_1$ и $BS_2$. Докажите, что $T_1T_2$, $AB$ и $H_1H_2$ пересекаются в одной точке.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана окружность, точка A на ней и точка M внутри нее.
Рассматриваются хорды BC , проходящие через M . Докажите, что окружности,
проходящие через середины сторон всех треугольников ABC , касаются некоторой
фиксированной окружности.
|
|
Сложность: 5- Классы: 9,10,11
|
В треугольнике $ABC$ $\angle A=60^{\circ}$; $AD$, $BE$ и $CF$ – биссектрисы; $P$, $Q$ – проекции $A$ на $EF$ и $BC$; $R$ – вторая точка пересечения окружности $DEF$ с прямой $AD$. Докажите, что $P$, $Q$, $R$ лежат на одной прямой.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан треугольник $ABC$ и окружности $\omega_1$, $\omega_2$, $\omega_3$, $\omega_4$ с центрами $X$, $Y$, $Z$, $T$ соответственно такие, что каждая из прямых $BC$, $CA$, $AB$ высекает на них четыре равных отрезка. Докажите, что точка пересечения медиан треугольника $ABC$ делит отрезок с концами в $X$ и радикальном центре $\omega_2$, $\omega_3$, $\omega_4$ в отношении $2:1$, считая от $X$.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 70]