Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1280]
Биссектрисы внутренних углов треугольника продолжены до точек
пересечения с описанной около треугольника окружностью, отличных от вершин
исходного треугольника. В результате попарного соединения этих точек
получился новый треугольник с углами
45o,
60o и
75o.
Найдите отношение площадей исходного и нового треугольников.
Пусть точки A , B , C лежат на окружности, а прямая b касается этой окружности в точке B . Из точки P , лежащей
на прямой b , опущены перпендикуляры PA1 и PC1 на прямые AB и BC соответственно (точки A1 и C1 лежат на
отрезках AB и BC ). Докажите, что A1C1
AC .
|
|
Сложность: 4- Классы: 8,9,10
|
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.
[Задача Архимеда]
|
|
Сложность: 4- Классы: 8,9
|
В дугу AB окружности вписана ломаная AMB из двух отрезков
(AM > MB).
Докажите, что основание перпендикуляра KH, опущенного из середины K дуги AB на отрезок AM, делит ломаную пополам.
Через вершины A и C треугольника ABC проведена окружность K, центр которой лежит на описанной окружности треугольника ABC. Окружность K пересекает продолжение стороны BA за точку A
в точке M. Найдите угол C, если MA : AB = 2 : 5, а ∠B = arcsin 3/5.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1280]