ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1282]
Точки касания вписанной в треугольник окружности соединены отрезками и в полученном треугольнике проведены высоты. Докажите, что прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника.
В прямоугольном треугольнике ABC угол C — прямой, а сторона
CA = 4 . На катете BC взята точка D , причём CD = 1 . Окружность
радиуса
В окружности с центром O проведён диаметр; A и B — точки
окружности, расположенные по одну сторону от этого диаметра. На
диаметре взята такая точка M, что AM и BM образуют равные углы с
диаметром. Докажите, что
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD = 3 и sin∠ACD·sin∠BCD = 1/3. Найдите расстояние от точки D до хорды AB.
Все углы треугольника ABC меньше
120o.
Докажите, что внутри его существует точка, из которой все стороны
треугольника видны под углом
120o.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке