|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1284]
На хорде AB окружности S с центром в точке O взята точка C. D — вторая точка пересечения окружности S с окружностью, описанной около треугольника ACO. Докажите, что CD = CB.
Точки касания вписанной в треугольник окружности соединены отрезками и в полученном треугольнике проведены высоты. Докажите, что прямые, соединяющие основания этих высот, параллельны сторонам исходного треугольника.
В окружности с центром O проведён диаметр; A и B — точки
окружности, расположенные по одну сторону от этого диаметра. На
диаметре взята такая точка M, что AM и BM образуют равные углы с
диаметром. Докажите, что
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD = 3 и sin∠ACD·sin∠BCD = 1/3. Найдите расстояние от точки D до хорды AB.
Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1284] |
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|