ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 1275]      



Задача 54903

Темы:   [ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D лежит на стороне BC, а точка O -- на отрезке AD. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, 4AC = 3$ \sqrt{2}$AB, угол DAC в два раза больше угла BAD, а угол OCA в два раза меньше угла OCB. Найдите косинус угла ABC.

Прислать комментарий     Решение


Задача 54904

Темы:   [ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D лежит на стороне BC, прямая AD пересекается с биссектрисой угла ACB в точке O. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC : AB = 4 : 3, а угол DAC в три раза больше угла DAB. Найдите косинус угла ACB.

Прислать комментарий     Решение


Задача 54905

Темы:   [ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D лежит на стороне BC, а точка O — на отрезке AD. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC = 2$ \sqrt{2}$AB, угол DAC в два раза больше угла BAD, а угол OCA в два раза меньше угла OCB. Найдите косинус угла ACB.

Прислать комментарий     Решение


Задача 35216

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

В окружность вписан выпуклый шестиугольник ABCDEF.
  а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что  AB·CD·EF = BC·DE·FA.
  б) Известно, что  AB·CD·EF = BC·DE·FA.  Докажите, что диагонали AD, BE, CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 52373

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = 60o, $ \angle$B = 45o. Продолжения высот треугольника ABC описанную около него окружность в точках M, N, P. Найдите отношение площадей треугольников ABC и MNP.

Прислать комментарий     Решение


Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .