Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 1282]
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.
Внутри квадрата ABCD выбрана такая точка M, что
∠MAC = ∠MCD = α. Найдите величину угла ABM.
Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.
Во вписанном четырёхугольнике ABCD известны отношения AB : DC = 1 : 2 и BD : AC = 2 : 3. Найдите DA : BC.
Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 1282]