ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1275]      



Задача 53116

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Две окружности касаются друг друга внутренним образом в точке A; AB — диаметр большей окружности. Хорда BK большей окружности касается меньшей окружности в точке C. Докажите, что AC является биссектрисой треугольника ABK.

Прислать комментарий     Решение


Задача 54918

Темы:   [ Теорема синусов ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC из основания D высоты BD опущены перпендикуляры DM и DN на стороны AB и BC. Известно, что MN = a, BD = b. Найдите угол ABC.

Прислать комментарий     Решение


Задача 55552

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4-
Классы: 8,9

В ромбе ABCD угол A равен 60o. Точки M и N лежат на сторонах CD и AD соответственно. Докажите, что если один из углов треугольника BMN равен равен 60o, то и остальные тоже равны по 60o.

Прислать комментарий     Решение


Задача 78534

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Даны три точки A, B, C, лежащие на одной прямой, и точка O вне этой прямой. Обозначим через O1, O2, O3 центры окружностей, описанных около треугольников OAB, OAC, OBC. Доказать, что точки O1, O2, O3 и O лежат на одной окружности.
Прислать комментарий     Решение


Задача 111783

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
[ ГМТ и вписанный угол ]
Сложность: 4-
Классы: 8,9

На стороне BC треугольника ABC выбрана произвольная точка D . В треугольники ABD и ACD вписаны окружности с центрами K и L соответственно. Докажите, что описанные окружности треугольников BKD и CLD вторично пересекаются на фиксированной окружности.
Прислать комментарий     Решение


Страница: << 167 168 169 170 171 172 173 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .