Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 769]
В треугольник со сторонами AB = 8, BC = 6, AC = 4 вписана
окружность. Найдите длину отрезка DE, где D и E — точки касания
этой окружности со сторонами AB и AC соответственно.
|
|
Сложность: 3+ Классы: 9,10,11
|
На стороне
AB треугольника ABC выбрана точка M. В треугольнике ACM
точка I1 – центр вписанной, J1 – центр вневписанной
окружности, касающейся стороны CM. В треугольнике BCM точка
I2 – центр вписанной, J2 центр вневписанной окружности,
касающейся стороны CM. Докажите, что прямая, проходящая через
середины отрезков I1I2 и J1J2 перпендикулярна AB.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из точки $A$ к окружности $\Omega$ проведены касательные $AB$ и $AC$. На отрезке $BC$ отмечена середина $M$ и произвольная точка $P$. Прямая $AP$ пересекает окружность $\Omega$ в точках $D$ и $E$. Докажите, что общие внешние касательные к окружностям $MDP$ и $MPE$ пересекаются на средней линии треугольника $ABC$.
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
На плоскости отмечена точка O. Можно ли так расположить на плоскости а) 7 кругов; б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 769]