Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 769]
|
|
Сложность: 5 Классы: 9,10,11
|
Даны две окружности, касающиеся внутренним образом
в точке
N . Касательная к внутренней окружности,
проведённая в точке
K , пересекает внешнюю окружность
в точках
A и
B . Пусть
M – середина дуги
AB ,
не содержащей точку
N . Докажите, что радиус окружности,
описанной около треугольника
BMK , не зависит от выбора
точки
K на внутренней окружности.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть I – центр вписанной окружности неравнобедренного треугольника ABC. Через A1 обозначим середину дуги BC описанной окружности треугольника ABC, не содержащей точки A, а через A2 – середину дуги BAC. Перпендикуляр, опущенный из точки A1 на прямую A2I, пересекает прямую BC в точке A'. Аналогично определяются точки B' и C'.
а) Докажите, что точки A', B' и C' лежат на одной прямой.
б) Докажите, что эта прямая перпендикулярна прямой OI, где O – центр описанной окружности треугольника ABC.
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
|
|
Сложность: 3- Классы: 8,9,10
|
Найдите радиусы вписанной и вневписанных окружностей прямоугольного треугольника с катетом, равным 2, и противолежащим острым углом в 30°.
В равнобедренный треугольник, у которого боковая сторона равна 100, а основание 60, вписана окружность.
Найдите расстояние между точками касания, находящимися на боковых сторонах.
Страница:
<< 131 132 133 134
135 136 137 >> [Всего задач: 769]