|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольнике ABC угол A равен 60o ; AB:AC=3:2 . На сторонах AB и AC расположены соответственно точки M и N так, что BM=MN=NC . Найдите отношение площади треугольника AMN к площади треугольника ABC . |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 993]
Угол при вершине A ромба ABCD равен 20°. Точки M и
N – основания перпендикуляров, опущенных из вершины B на
стороны AD и CD.
Точка M расположена на стороне CD квадрата ABCD с центром O, причём CM : MD = 1 : 2.
Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении 1 : 3. Найдите стороны параллелограмма.
На стороне AD параллелограмма ABCD взята точка P так, что
AP : AD = 1 : n, Q – точка пересечения прямых AC и BP.
Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 993] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|