Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 496]
Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.
|
|
Сложность: 3 Классы: 8,9,10,11
|
В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
|
|
Сложность: 3 Классы: 8,9,10
|
Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.
|
|
Сложность: 3 Классы: 10,11
|
Найдите углы выпуклого четырёхугольника
ABCD, в котором
BAC = 30
o,
ACD = 40
o,
ADB = 50
o,
CBD = 60
o и
ABC +
ADC = 180
o.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 496]