ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 292]      



Задача 53847

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции KLMN основание KN равно 9, основание LM равно 5. Точки P и Q лежат на диагонали LN, причём точка P расположена между точками L и Q, а отрезки KP и MQ перпендикулярны диагонали LN. Найдите площадь трапеции KLMN, если  QN/LP = 5.

Прислать комментарий     Решение

Задача 54651

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

Дана полуокружность с диаметром AB. С помощью циркуля и линейки постройте хорду MN, параллельную AB, так, чтобы трапеция AMNB была описанной.

Прислать комментарий     Решение


Задача 66725

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.

Прислать комментарий     Решение

Задача 66957

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Четырехугольники (построения) ]
[ Построения одной линейкой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
Прислать комментарий     Решение


Задача 79508

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 7,8,9

Пусть AB — основание трапеции ABCD. Доказать, что если AC + BC = AD + BD, то трапеция ABCD — равнобокая.
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .