ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 292]      



Задача 102455

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В окружность радиуса $ \sqrt{7}$ вписана трапеция с меньшим основанием 4. Через точку на этой окружности, касательная в которой параллельна одной из боковых сторон трапеции, проведена параллельная основаниям трапеции хорда окружности длины 5. Найдите длину диагонали трапеции и площадь трапеции.

Прислать комментарий     Решение


Задача 108691

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В равнобедренную трапецию ABCD ( AB=CD ) вписана окружность. Пусть M – точка касания окружности со стороной CD , K – точка пересечения окружности с отрезком AM , L – точка пересечения окружности с отрезком BM . Вычислите величину + .
Прислать комментарий     Решение


Задача 111504

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема синусов ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 4
Классы: 8,9

Около окружности описана равнобедренная трапеция. Радиус этой окружности в раз меньше радиуса окружности, описанной около трапеции. Найдите угол при основании трапеции.
Прислать комментарий     Решение


Задача 116181

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 9,10

В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.

Прислать комментарий     Решение

Задача 55452

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Окружность, вписанная в угол ]
Сложность: 4
Классы: 8,9

Углы при основании AD трапеции ABCD равны 2$ \alpha$ и 2$ \beta$. Докажите, что трапеция описанная тогда и только тогда, когда $ {\frac{BC}{AD}}$ = tg$ \alpha$tg$ \beta$.

Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .