ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 292]      



Задача 64975

Темы:   [ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 9,10,11

Автор: Кеян Д.

В треугольнике ABC  ∠B = 2∠C.  Точки P и Q на серединном перпендикуляре к стороне CB таковы, что  ∠CAP = ∠PAQ = ∠QAB = ⅓ ∠A.
Докажите, что Q – центр описанной окружности треугольника CPB.

Прислать комментарий     Решение

Задача 66112

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Обухов Б.

В выпуклом шестиугольнике ABCDEF все стороны равны, а также  AD = BE = CF.  Докажите, что в этот шестиугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 102242

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

На одной стороне угла A взяты точки B, C, D, а на другой – точки E, F, G, так, что  FDBC,  CGEF,  ECBD,  BFEG.  Отношение длины отрезка BE к расстоянию от точки A до центра описанной вокруг четырёхугольника BDGE окружности равно 20/17. Найдите величину угла A.

Прислать комментарий     Решение

Задача 115677

Темы:   [ Вспомогательные равные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Точки A1 и A2 делят на три равные части сторону AC, а точки B1 и B2 – сторону BC.
Докажите, что если углы A1BA2 и B1AB2 равны, то треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 65690

Темы:   [ Правильные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если:  а) k = 6;   б) k ≥ 7?

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .