Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 292]
На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно, причём AM/AC = CN/CE = λ. Известно, что точки B, M и N лежат на одной прямой. Найдите λ.
Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F.
Докажите, что FA = AB.
На стороне CD ромба ABCD нашлась такая точка K, что AD = BK. Пусть F – точка пересечения диагонали BD и серединного перпендикуляра к стороне BC. Докажите, что точки A, F и K лежат на одной прямой.
Окружность вписана в равнобедренную трапецию ABCD с основаниями BC = a и AD = b. Точка H – проекция вершины B на AD, точка P – проекция точки H на AB, точка F лежит на отрезке BH, причём FH = AH. Найдите AB, BH, BP, DF и расположите
найденные величины по возрастанию.
Страница:
<< 43 44 45 46
47 48 49 >> [Всего задач: 292]