|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными? Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 295]
Четырёхугольник ABCD вписан в окружность с центром в точке O, AO ⊥ OB, OC ⊥ OD. Перпендикуляр, опущенный из вершины C на прямую AD, равен 9,
Длины двух параллельных хорд окружности равны 40 и 48, расстояние между ними равно 22. Найдите радиус окружности.
В равнобедренную трапецию ABCD (BC || AD) вписана окружность радиуса R, касающаяся основания AD в точке P и пересекающая отрезок BP в такой точке Q, что PQ = 3BQ. Найдите углы и площадь трапеции.
На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно, причём AM/AC = CN/CE = λ. Известно, что точки B, M и N лежат на одной прямой. Найдите λ.
Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 295] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|