Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 373]
Точки
K и
L на сторонах соответственно
AB и
AC
остроугольного треугольника
ABC таковы, что
KL || BC ;
M – точка пересечения перпендикуляров,
восставленных в точках
K и
L к отрезкам
AB и
AC .
Докажите, что точки
A ,
M и центр
O описанной окружности
треугольника
ABC лежат на одной прямой.
Докажите, что при гомотетии окружность переходит в
окружность.
|
|
Сложность: 3 Классы: 10,11
|
Из точки
M по плоскости с постоянной скоростью ползёт муравей. Его путь
представляет собой спираль, которая наматывается на точку
O и гомотетична
некоторой своей части относительно этой точки. Сможет ли муравей пройти весь
свой путь за конечное время?
Докажите, что точки, симметричные произвольной точке
относительно середин сторон квадрата, являются вершинами
некоторого квадрата.
На каждом из оснований AD и BC трапеции ABCD построены вне
трапеции равносторонние треугольники.
Докажите, что отрезок, соединяющий третьи вершины этих треугольников, проходит через точку пересечения диагоналей трапеции.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 373]