ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 373]      



Задача 58006

Тема:   [ Поворотная гомотетия ]
Сложность: 3
Классы: 9

Окружности S1 и S2 пересекаются в точках A и B. При поворотной гомотетии P с центром A, переводящей S1 в S2, точка M1 окружности S1 переходит в M2. Докажите, что прямая M1M2 проходит через точку B.
Прислать комментарий     Решение


Задача 58028

Тема:   [ Композиции гомотетий ]
Сложность: 3
Классы: 9

Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда центры этих поворотных гомотетий совпадают.
Прислать комментарий     Решение


Задача 58029

Тема:   [ Композиции гомотетий ]
Сложность: 3
Классы: 9

Пусть H1 и H2 — две поворотные гомотетии. Докажите, что H1oH2 = H2oH1 тогда и только тогда, когда H1oH2(A) = H2oH1(A) для некоторой точки A.
Прислать комментарий     Решение


Задача 108001

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Прислать комментарий     Решение

Задача 108004

Темы:   [ Гомотетия помогает решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

Докажите, что три прямые, проведённые через середины сторон треугольника параллельно биссектрисам противолежащих углов, пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .