ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



Задача 52453

Темы:   [ Окружности (построения) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 4
Классы: 8,9

Через данную точку проведите окружность, касающуюся данной прямой и данной окружности.
Прислать комментарий     Решение


Задача 52464

 [Формула Эйлера]
Темы:   [ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
Сложность: 4
Классы: 8,9

Докажите формулу Эйлера: O1O22 = R2-2rR , где O1 , O2 — центры соответственно вписанной и описанной окружностей треугольника, r , R — радиусы этих окружностей.
Прислать комментарий     Решение


Задача 55470

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Даны четыре окружности, каждая из которых касается внешним образом двух из трёх остальных. Докажите, что через точки касания можно провести окружность.
Прислать комментарий     Решение


Задача 55509

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Инверсия помогает решить задачу ]
[ Свойства инверсии ]
[ Гомотетичные окружности ]
Сложность: 4
Классы: 8,9

Точка C расположена на отрезке AB . По одну сторону от прямой AB на отрезках AB , AC и BC построены как на диаметрах полуокружности S , S1 и S2 . Через точку C проведена прямая CD , перпендикулярная AB ( D — точка на полуокружности S ). Окружность K1 касается отрезка CD и полуокружностей S и S1 , а окружность K2 — отрезка CD и полуокружностей S и S2 . Докажите, что окружности K1 и K2 равны.
Прислать комментарий     Решение


Задача 64399

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
[ Инверсия помогает решить задачу ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .