ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 391]      



Задача 57840

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Окружность пересекает стороны BC, CA, AB треугольника ABC в точках A1 и A2, B1 и B2, C1 и C2 соответственно. Докажите, что если перпендикуляры к сторонам треугольника, проведенные через точки A1, B1 и C1, пересекаются в одной точке, то и перпендикуляры к сторонам, проведенные через A2, B2 и C2, тоже пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57841

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Докажите, что прямые, проведенные через середины сторон вписанного четырехугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57843

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Окружности S1 и S2 радиуса 1 касаются в точке A; центр O окружности S радиуса 2 принадлежит S1. Окружность S1 касается S в точке B. Докажите, что прямая AB проходит через точку пересечения окружностей S2 и S.
Прислать комментарий     Решение


Задача 57847

Тема:   [ Композиция центральных симметрий ]
Сложность: 3
Классы: 9

Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место.
Прислать комментарий     Решение


Задача 57851

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 3
Классы: 9

Через данную точку A проведите прямую так, чтобы отрезок, заключенный между точками пересечения ее с данной прямой и данной окружностью, делился точкой A пополам.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .