ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 563]      



Задача 66930

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Угол между касательной и хордой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.
Прислать комментарий     Решение


Задача 73541

Темы:   [ Задачи на движение ]
[ Графики и ГМТ на координатной плоскости ]
[ Симметрия помогает решить задачу ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 7,8,9,10

Перед вами часы. Сколько существует положений стрелок, по которым нельзя определить время, если не знать, какая стрелка часовая,
а какая – минутная?
Прислать комментарий     Решение


Задача 98150

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Осевая и скользящая симметрии (прочее) ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD  AB = BC = CD = 1,  AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.

Прислать комментарий     Решение

Задача 108167

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
Сложность: 4
Классы: 8,9

Диагональ AC трапеции ABCD равна боковой стороне CD. Прямая, симметричная BD относительно AD, пересекает прямую AC в точке E.
Докажите, что прямая AB делит отрезок DE пополам.

Прислать комментарий     Решение

Задача 111343

Темы:   [ Ортоцентр и ортотреугольник ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Высоты AA' и CC' остроугольного треугольника ABC пересекаются в точке H. Точка B0 – середина стороны AC.
Докажите, что точка пересечения прямых, симметричных BB0 и HB0 относительно биссектрис углов B и AHC соответственно, лежит на прямой A'C'.

Прислать комментарий     Решение

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .