ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 563]      



Задача 78569

Темы:   [ Целочисленные решетки (прочее) ]
[ Процессы и операции ]
[ Композиции симметрий ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9

Дан прямоугольный биллиард размером 26×1965 (сторона длины 1965 направлена слева направо, а сторона длины 26 – сверху вниз; лузы расположены в вершинах прямоугольника). Из нижней левой лузы под углом 45° к бортам выпускается шар. Доказать, что после нескольких отражений от бортов он упадет в верхнюю левую лузу. (Угол падения равен углу отражения.)

Прислать комментарий     Решение

Задача 108039

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В шестиугольнике ABCDEF, вписанном в окружность,  AB = BC,  CD = DE,  EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 108244

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Свойства симметрий и осей симметрии ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 9,10,11

Автор: Сонкин М.

Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что  KOAC.

Прислать комментарий     Решение

Задача 108639

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают окружность в точках E и F соответственно, D произвольная точка на (меньшей) дуге AC, K – точка пересечения DF и AB, L – точка пересечения DE и BC. Докажите, что прямая KL проходит через ортоцентр треугольника ABC.

Прислать комментарий     Решение

Задача 110759

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса угла ]
[ Симметрия помогает решить задачу ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

Прислать комментарий     Решение

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .