Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 563]
Дан прямоугольный биллиард размером 26×1965 (сторона длины 1965 направлена слева направо, а сторона длины 26 – сверху вниз; лузы расположены в вершинах прямоугольника). Из нижней левой лузы под углом 45° к бортам выпускается шар. Доказать, что после нескольких отражений от бортов он упадет в верхнюю левую лузу. (Угол падения равен углу отражения.)
В шестиугольнике ABCDEF, вписанном в окружность, AB = BC, CD = DE, EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.
|
|
Сложность: 4- Классы: 9,10,11
|
Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что KO ⊥ AC.
Вокруг остроугольного треугольника ABC описана окружность. Продолжения высот треугольника, проведённых из вершин A и C, пересекают
окружность в точках E и F соответственно, D произвольная
точка на (меньшей) дуге AC, K – точка пересечения DF и
AB, L – точка пересечения DE и BC. Докажите, что
прямая KL проходит через ортоцентр треугольника ABC.
Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B .
Страница:
<< 80 81 82 83
84 85 86 >> [Всего задач: 563]