Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 563]
|
|
Сложность: 4 Классы: 10,11
|
В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном треугольнике ABC угол C равен 60°, H – точка пересечения высот. Окружность с центром H и радиусом HC второй раз пересекает прямые CA и CB в точках M и N соответственно. Докажите, что прямые AN и BM параллельны (или совпадают).
|
|
Сложность: 4 Классы: 10,11
|
Каждое целое число на координатной прямой покрашено в один из двух цветов – белый или чёрный, причём числа 2016 и 2017 покрашены разными цветами. Обязательно ли найдутся три одинаково покрашенных целых числа, сумма которых равна нулю?