Страница:
<< 1 2 3 4
5 >> [Всего задач: 23]
На основаниях трапеции как на сторонах построены во внешнюю сторону два квадрата. Докажите, что отрезок, соединяющий центры квадратов, проходит через точку пересечения диагоналей трапеции.
Четырёхугольник разрезан диагоналями на четыре треугольника. Докажите, что точки пересечения медиан этих треугольников образуют параллелограмм.
Из плоскости вырезали равносторонний треугольник.
Можно ли оставшуюся часть плоскости замостить треугольниками, любые два из которых подобны, но не гомотетичны?
|
|
|
Сложность: 5- Классы: 8,9,10,11
|
Дан треугольник
ABC и точка
P внутри него.
A' ,
B' ,
C' –
проекции
P на прямые
BC ,
CA ,
AB . Докажите, что центр окружности,
описанной около треугольника
A'B'C' , лежит внутри треугольника
ABC .
|
|
|
Сложность: 4 Классы: 9,10,11
|
Дана окружность и точка P внутри неё. Два произвольных перпендикулярных
луча с началом в точке P пересекают окружность в точках A и B. Tочка X является проекцией точки P на прямую AB, Y – точка пересечения касательных к окружности, проведённых через точки A и B. Докажите, что все прямые XY проходят через одну и ту же точку.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 23]