ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 67339

Темы:   [ ГМТ - прямая или отрезок ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шекера А.

Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.
Прислать комментарий     Решение


Задача 66811

Темы:   [ Точка Микеля ]
[ Поворотная гомотетия (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 9,10,11

Автор: Bhattacharya A.

Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67370

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В равнобедренном треугольнике $ABC$ ($AC=BC$) $O$ – центр описанной окружности, $H$ – ортоцентр, $P$ – такая точка внутри треугольника, что $\angle APH=\angle BPO=\pi/2$. Докажите, что $\angle PAC=\angle PBA=\angle PCB$.
Прислать комментарий     Решение


Задача 66097

Темы:   [ Перпендикулярные прямые ]
[ Векторы помогают решить задачу ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 9,10,11

Внутри треугольника ABC взята такая точка D, что  BD = CD,  ∠BDC = 120°.  Вне треугольника ABC взята такая точка E, что  AE = CE,  ∠AEC = 60°  и точки B и E находятся в разных полуплоскостях относительно AC. Докажите, что  ∠AFD = 90°,  где F – середина отрезка BE.

Прислать комментарий     Решение

Задача 78288

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Поворотная гомотетия (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9

ABC – равнобедренный треугольник;  AB = BC,  BH – высота, M – середина стороны AB, K – точка пересечения BH с описанной окружностью треугольника BMC. Доказать, что  BK = 3/2 R,  где R – радиус описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .