ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 484]      



Задача 54589

Темы:   [ Построение треугольников по различным элементам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

Прислать комментарий     Решение


Задача 54594

Темы:   [ Четырехугольники (построения) ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Автор: Чикин В.

С помощью циркуля и линейки постройте выпуклый четырёхугольник по серединам его трёх равных сторон.

Прислать комментарий     Решение

Задача 54598

Темы:   [ Построение треугольников по различным элементам ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник, если заданы сторона, прилежащий к ней угол и разность двух других сторон.

Прислать комментарий     Решение

Задача 54632

Темы:   [ Построение треугольников по различным точкам ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник ABC по точкам A1, B1 и C1, симметричным ортоцентру треугольника относительно прямых BC, CA, AB.

Прислать комментарий     Решение

Задача 54633

Темы:   [ Построение треугольников по различным точкам ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная три точки A1, B1 и C1, симметричные центру O описанной окружности этого треугольника относительно прямых BC, CA и AB.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .