ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 111]      



Задача 55412

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём  ∠BME = 70°,  ∠ADB = 50°,
CDB = 60°.  Где расположена точка M: на диагонали AC или на её продолжении?

Прислать комментарий     Решение

Задача 98549

Темы:   [ Неопределено ]
[ Пересекающиеся окружности ]
[ ГМТ - окружность или дуга окружности ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

На плоскости даны три красные точки, три синие точки и ещё точка O, лежащая как внутри треугольника с красными вершинами, так и внутри треугольника с синими вершинами, причём расстояние от O до любой красной точки меньше расстояния от O до любой синей точки. Могут ли все красные и все синие точки лежать на одной и той же окружности?

Прислать комментарий     Решение

Задача 115885

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вневписанные окружности ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 3+
Классы: 8,9,10,11

Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу.

Прислать комментарий     Решение

Задача 36996

Темы:   [ Построение треугольников по различным элементам ]
[ Окружность Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Гомотетия (ГМТ) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте треугольник АВС по углу А и медианам, проведенным из вершин В и С.

Прислать комментарий     Решение

Задача 52350

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, из которых данный отрезок виден под данным углом.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 111]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .