Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства

$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,    
 1$\displaystyle \overrightarrow{OA_2}$ + $\displaystyle \overrightarrow{OA_4}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_3}$,    
to4.5cm $\displaystyle \dotfill$    
$\displaystyle \overrightarrow{OA_{n-1}}$ + $\displaystyle \overrightarrow{OA_1}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_n}$.    

необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр.

Вниз   Решение


Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.

ВверхВниз   Решение



Найдите объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной, равной a, если боковое ребро призмы равно стороне основания и наклонено к плоскости основания под углом 60o.

ВверхВниз   Решение


Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

ВверхВниз   Решение


а) Дан кусок проволоки длиной 120 см. Можно ли, не ломая проволоки, изготовить каркас куба с ребром 10 см?
б) Какое наименьшее число раз придется ломать проволоку, чтобы всё же изготовить требуемый каркас?

Вверх   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



Задача 56887

Темы:   [ Вписанные и описанные окружности ]
[ Периметр треугольника ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанный угол равен половине центрального ]
[ Средняя линия треугольника ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4+
Классы: 8,9

Точка E – середина той дуги AB описанной окружности треугольника ABC, на которой лежит точка C; C1 – середина стороны AB. Из точки E опущен перпендикуляр EF на AC. Докажите, что:
  а) прямая C1F делит пополам периметр треугольника ABC;
  б) три такие прямые, построенные для каждой стороны треугольника, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116901

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9

Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что  ∠QPH = 90°.

Прислать комментарий     Решение

Задача 53127

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине разности утроенного угла A и угла C треугольника. Сумма сторон AC и AB равна 2 + $ \sqrt{3}$, а сумма расстояний от точки O до сторон AC и AB равна 2. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 53128

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке C пересекается с прямой, делящей пополам угол B треугольника, в точке K, причём угол BKC равен половине угла C треугольника. Сторона AB на $ \sqrt{3}$ длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.

Прислать комментарий     Решение


Задача 53129

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Неравенство треугольника (прочее) ]
[ Средняя линия треугольника ]
Сложность: 5
Классы: 8,9

Около треугольника ABC описана окружность с центром в точке O. Касательная к окружности в точке B пересекается с прямой AC в точке K, причём угол AKB равен разности учетверённого угла A и угла B треугольника. Сторона AB в два раза длиннее стороны AC, а расстояние от точки O до стороны AC на 1 больше расстояния от точки O до стороны AB. Найдите радиус окружности.

Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .