ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 73]      



Задача 53014

Темы:   [ Теорема косинусов ]
[ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Внутри прямого угла с вершиной C, на его биссектрисе взята точка O, причём OC = $ \sqrt{2}$. С центром в точке O построена окружность радиуса 2. Найдите площадь фигуры, ограниченной сторонами угла и дугой окружности, заключённой между ними.

Прислать комментарий     Решение


Задача 53015

Темы:   [ Теорема косинусов ]
[ Площадь круга, сектора и сегмента ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Внутри угла в 120o с вершиной C, на его биссектрисе взята точка O, причём OC = $ \sqrt{\frac{2}{3}}$. С центром в точке O построена окружность радиуса 1. Найдите площадь фигуры, ограниченной сторонами угла и дугой окружности, заключённой между ними.

Прислать комментарий     Решение


Задача 53219

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

Дан квадрат ABCD, сторона которого равна a, и построены две окружности. Первая окружность целиком расположена внутри квадрата ABCD, касается стороны AB в точке E, а также касается стороны BC и диагонали AC. Вторая окружность имеет центром точку A и проходит через точку E. Найдите площадь общей части двух кругов, ограниченных этой окружностью.

Прислать комментарий     Решение


Задача 53231

Темы:   [ Правильный (равносторонний) треугольник ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

В правильном треугольнике ABC проведена окружность, проходящая через центр треугольника и касающаяся стороны BC в её середине D. Из точки A проведена прямая, касающаяся окружности в точке E, причём $ \angle$BAE < 30o. Найдите площадь треугольника ABE, если площадь треугольника ABC равна $ {\frac{10}{4 - \sqrt{2}}}$.

Прислать комментарий     Решение


Задача 102415

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

В окружность $ \gamma$ с центром в точке O вписан четырёхугольник ABCD, диагонали которого перпендикулярны. Известно, что угол AOB втрое больше угла COD. Найдите площадь круга, ограниченного окружностью $ \gamma$, и сравните с числом 510, если CD = 10.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 73]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .